Abstract

The performance of a magnetic fluid based squeeze film between infinitely long porous rough parallel plates with porous matrix of non-uniform thickness has been investigated. The bearing surfaces are considered to be transversely rough. The stochastic film thickness characterising the random roughness is assumed to be asymmetric with non-zero mean and variance. A magnetic fluid is used as a lubricant and the external magnetic field is oblique to the lower plate. With usual assumptions of hydrodynamic lubrication the associated Reynolds' equation is solved with suitable boundary conditions. Then expressions for pressure distribution, load carrying capacity and response time are obtained. It is observed that the load carrying capacity increases nominally due to magnetic fluid lubricant resulting in improved performance. But it is also seen that the composite roughness of the bearing surfaces introduces an adverse effect which gets more compounded due to the thickness ratio. However, the negative effect can be compensated to certain extent by the magnetic fluid lubricant in the case of negatively skewed roughness. This compensation further enhances when negative variance is involved. This study tends to suggest that the thickness ratio may play a crucial role for a better performance of the magnetic fluid based bearing system besides providing an additional degree of freedom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call