Abstract

Coupled solute transport and reaction models are computationally demanding when multispecies, multidimensional simulations are considered. Split operator methods provide approximate solutions to the reactive solute transport problem that are both relatively efficient to compute and to construct. The transport and reaction operators are split into two separate computational steps. Split operator methods are introduced in the context of single species sorption to the soil, with an emphasis on the splitting errors that are induced. For standard two-step methods, the splitting error is proportional to Δt , the temporal step size of the numerical scheme. The alternating split operator scheme, in which the order of the operations is switched at succeeding time steps, apparently does not remove the splitting error for nonlinear reactions, whereas it is removed for linear cases. The truncation error is extended to the case of two reacting species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.