Abstract
Fire is one of the natural agents with the greatest impact on the terrestrial ecosystem and plays an important ecological role in a large part of the terrestrial surface. Remote sensing is an important technique applied in mapping and monitoring changes in forest landscapes affected by fires. This study presents a spectral separability analysis for the detection of burned areas using Landsat-8 OLI/TIRS images in the context of fires that occurred in different biomes of Brazil (dry ecosystem) and Portugal (temperate forest). The research is based on a fusion of spectral indices and automatic classification algorithms scientifically proven to be effective with as little human interaction as possible. The separability index (M) and the Reed–Xiaoli automatic anomaly detection classifier (RXD) allowed the evaluation of the spectral separability and the thematic accuracy of the burned areas for the different spectral indices tested (Burn Area Index (BAI), Normalized Burn Ratio (NBR), Mid-Infrared Burn Index (MIRBI), Normalized Burn Ratio 2 (NBR2), Normalized Burned Index (NBI), and Normalized Burn Ratio Thermal (NBRT)). The analysis parameters were based on spatial dispersion with validation data, commission error (CE), omission error (OE), and the Sørensen–Dice coefficient (DC). The results indicated that the indices based exclusively on the SWIR1 and SWIR2 bands showed a high degree of separability and were more suitable for detecting burned areas, although it was observed that the characteristics of the soil affected the performance of the indices. The classification method based on bitemporal anomalous changes using the RXD anomaly proved to be effective in increasing the burned area in terms of temporal alteration and performing unsupervised detection without relying on the ground truth. On the other hand, the main limitations of RXD were observed in non-abrupt changes, which is very common in fires with low spectral signal, especially in the context of using Landsat-8 images with a 16-day revisit period. The results obtained in this work were able to provide critical information for fire mapping algorithms and for an accurate post-fire spatial estimation in dry ecosystems and temperate forests. The study presents a new comparative approach to classify burned areas in dry ecosystems and temperate forests with the least possible human interference, thus helping investigations when there is little available data on fires in addition to favoring a reduction in fieldwork and gross errors in the classification of burned areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.