Abstract

This paper investigates, through simulations, the tradeoff between energy efficiency (EE) and the overall spectral efficiency (SE) of fiber optic links for a given capacity and a link length. The comparison is made for various modulation formats, span lengths, and with/without using forward error correction (FEC). The power consumption of the different system components is estimated from the data sheets of the state-of-the-art equipment. Results show that the use of long single-mode fiber spans (i.e., more than 40 km) improves EE when coherent modulation formats are used. However, with noncoherent formats, the span length must be selected depending on SE, aggregated traffic amount needs to be transmitted, and link length. For almost all modulation formats, FEC reduces the overall energy consumption despite being one of the main power consumers in fiber optic communication systems. The power consumption of 3Rs becomes particularly important when the linear crosstalk limits the system reach. In all other cases, the power consumption of transponders and optical line amplifiers is dominating, but their contribution changes depending on the aggregated traffic amount and system reach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call