Abstract
We analysed the change of spatial genetic structure (SGS) of reproductive individuals over time in an expanding Pinus halepensis population. To our knowledge, this is the first empirical study to analyse the temporal component of SGS by following the dynamics of successive cohorts of the same population over time, rather than analysing different age cohorts at a single time. SGS is influenced by various factors including restricted gene dispersal, microenvironmental selection, mating patterns and the spatial pattern of reproductive individuals. Several factors that affect SGS are expected to vary over time and as adult density increases. Using air photo analysis, tree-ring dating and molecular marker analysis we reconstructed the spread of reproductive individuals over 30 years beginning from five initial individuals. In the early stages, genotypes were distributed randomly in space. Over time and with increasing density, fine-scale (< 20 m) SGS developed and the magnitude of genetic clustering increased. The SGS was strongly affected by the initial spatial distribution and genetic variation of the founding individuals. The development of SGS may be explained by fine-scale environmental heterogeneity and possibly microenvironmental selection. Inbreeding and variation in reproductive success may have enhanced SGS magnitude over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.