Abstract

A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissected embryonic axes and separated in the first dimension using a pH range from 4-7. A total of 401 protein spots were isolated, digested with trypsin, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified 335 protein spots by searching National Center for Biotechnology Information (NCBI) non redundant databases using the Mascot search engine and found a total of 200 unique proteins. Gene Ontology (GO) analysis was employed to understand the molecular processes in which the identified embryonic axes proteins are involved. The majority of proteins play a functional role in catalytic activity (42.9%) and binding (39.3%), followed by nutrient reservoir activity (5.3%), structural molecular activity (4.0%), antioxidant activity (3.2%), transporter activity (2.4%), enzyme regulator activity (1.2%), molecular transducer activity (0.8%), and transcription regulator activity (0.8%). Our 2D-profiling of soybean axis proteins has established for the first time a baseline proteome on which to investigate and compare factors affecting soybean embryonic development and the interaction of beneficial and pathogenic soilborne organisms during seed germination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call