Abstract

In this paper, we analyse three interior point continuous trajectories for convex programming with general linear constraints. The three continuous trajectories are derived from the primal–dual path-following method, the primal–dual affine scaling method and the central path, respectively. Theoretical properties of the three interior point continuous trajectories are fully studied. The optimality and convergence of all three interior point continuous trajectories are obtained for any interior feasible point under some mild conditions. In particular, with proper choice of some parameters, the convergence for all three interior point continuous trajectories does not require the strict complementarity or the analyticity of the objective function. These results are new in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.