Abstract

In this article, numerical methods are used to analyze the features of solutions to the non-isothermal Muskat — Leverett two-phase filtration model. The structure of solutions to thermal waterflooding problems for low-viscosity and high viscosity types of oil is considered. Typical solutions for different types of functional parameters of the model are shown. The simulations show that hot water displacement of high-viscosity oil is an effective method of increasing oil recovery. In particular, if in the case of thermal flooding the reservoir with low-viscosity oil, recovery increases by only a few percent, then for a field with high viscosity oil, thermal flooding increases oil recovery by tens of percent. It is shown that in order to increase the efficiency of the thermal flooding it is necessary to pump hot water with the minimum possible capillary parameter. High total filtration rate reduces total heat loss through the roof and sole of the formation. Numerical experiments have shown that for an adequate simulation of thermal flooding, in addition to taking into account changes in oil viscosity, it is necessary to take into account the action of capillary forces and the variation of relative phase permeability during the operation of the oil field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.