Abstract

In order to study the internal flow state and wear law of a bulb cross-flow unit based on the particle non-uniform phase model in the Euler–Euler method, the solid-liquid two-phase flow condition of the hydraulic turbine under different solid-phase diameters, concentrations, and guide vane openings is calculated. The results show that (1) Under the same solid-phase physical parameters, the distribution of solid-phase concentration on the working surface of the blade is positively correlated with the opening degree of the guide vane, the concentration of the solid phase on the back of the blade is negatively correlated with the opening degree of the guide vane. (2) The addition of the solid phase changes the time-domain period of pressure pulsations at the rotor inlet and the tailpipe inlet under clear water conditions, and the tailpipe pressure pulsation coefficient decreases with increasing solid-phase concentration. The pressure pulsation coefficient increases with increasing solid-phase diameter and concentration at the inlet of the rotor. (3) Numerical simulation of the wear characteristics of cross-flow turbine by Finne’s wear model reveals that the two-phase flow condition with high concentration, large particle size and small openings has a more serious effect on turbine blade wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.