Abstract
Enhancing the ability to make informed decisions stands as a significant challenge in modern IT. Specifically, there is a growing need to improve the efficiency of classification algorithms. When faced with multiple results derived from various methods, one can select the most probable decision using a robust aggregation operator. A common class of algorithms employed for this purpose is based on extensions of the Choquet integral (CI). In this study, we introduce and extensively analyze a novel aggregation operator concept founded on the generalization of the CI. This approach leverages quadrature formulae to calculate Choquet integral values, but with a unique modification involving a smoothing operation. This refinement results in more precise values, preserving the essential characteristics of the Choquet integral. These refined values can be effectively applied in the aggregation of classifiers and, more broadly, in information fusion processes. A series of numerical experiments demonstrates the efficiency of our approach. Furthermore, we thoroughly discuss and provide mathematical proofs for the properties of the newly constructed operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.