Abstract

Nanotwinned structures offer the potential to effectively enhance strength while preserving ductility and damage tolerance. In this paper we present an analytical model for quantifying slip transfer across twin boundaries and for deriving the attendant flow stress as a function of the twin lamellae size in nanotwinned face-centered cubic metals. The mechanistic models investigate how single or piled-up screw and non-screw dislocations interact with twin boundaries, by establishing connections with the size dependence of the activation volume. The models correctly predict the trends from a variety of independent prior experimental observations of the dependence of flow stress on twin lamella size in nanotwinned copper. They also rationalize a number of observations made from previous molecular dynamics simulations of the deformation of nanotwinned metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.