Abstract

An excitonic coupling model is developed based on an equation-of-motion coupled cluster combined with the fragment molecular orbital method. The effects of polarization and excitonic coupling on the splitting of quasi-degenerate levels in systems containing multiple chromophores are elucidated on dimers of formaldehyde, water, formic acid, hydrogen fluoride, and carbon monoxide. It is shown that the level structure is mainly determined by the mutual polarization of chromophores and to a lesser extent by the excitonic coupling. The role of symmetry in excitonic coupling in dimers is discussed. The excitonic coupling between all residues in the photoactive yellow protein (PDB: 2PHY) is analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call