Abstract
Abstract Traditional finite element analyses of the stress state in regions with dissimilar materials are incapable of correctly resolving the stress state because of the unbounded nature of the stresses. A finite element technique utilizing a coupled global (special) element with traditional elements is presented. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces. A hybrid global (special) element is developed utilizing the exact solution for the stress and displacement fields based on the eigenfunction expansion method under mechanical and thermal loading. The global element for arbitrary geometrical and material configurations, not limited to a few dissimilar material sectors, is interfaced with traditional local (conventional) elements while satisfying the inter-element continuity. The coupling between the hybrid global element and conventional finite elements is implemented into ansys , a commercially available finite element program. Also, the global element is integrated into the ansys graphical user interface for pre- and post-processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.