Abstract

Abstract In the bubbling regime of operation for fluidized beds, the major mechanism for heat transfer is transient conduction to periodic packets of densely packed particles at the heat transfer surface. The well known Mickley and Fairbanks model, with various subsequently proposed modifications, adequately describes this transient conduction mechanism. However, no adequate theory exists for heat transfer in high-temperature fluidized beds where radiative contribution becomes significant. Analysis of the radiative contribution is complicated by the nonlinear interaction of radiation with conduction/convection. This paper describes a differential formulation of the combined radiative/ conductive heat transfer process. The discrete flux method used by Churchill et al. for radiative transport in heterogeneous media is applied here to the problem of transient heat transfer to packets in fluidized beds. Packets are modeled as radiatively participating media with absorption, scattering, and emission of radiati...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.