Abstract

A study of a silicon metal oxide semiconductor (MOS)-type light-emitting device (LED) in which the p–n junction works under a reverse bias and the gate voltage is applied to modulate the electric field distribution from the p+ region through the n region. The use of gate voltage could result in the generation of a field-induced junction which leads to a decrease of the operating voltage of the LED compared to the two terminal p–n junction LED. The dynamics of the photonic emission in the structure and its related response time, and then a more detailed theoretical and simulation understanding of the photonic emission is achieved, which definitively demonstrates the capability of the device in which a reverse-bias region showing light modulation with multi-GHz bandwidth and gigabit-per-second data rate at near-infrared wavelength. Although the emitted optical power is weak, it is advantageous to utilize the device in all-silicon optoelectronic integrated circuits, especially for short-distance on-chip optical interconnects achieved by standard complementary MOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.