Abstract

The water flow and movement of silt in a prototype double-suction centrifugal pump was simulated using an Euler-Lagrange multiphase flow model. J-Grooves were adopted to protect the impeller ring from silt abrasion. The influence of J-grooves on the silt concentration and pump efficiency was analyzed. The results show that the radial component of the relative velocity around the impeller ring is too low to move the silt out of the spacing between the impeller plate and the casing. The high silt concentration around the impeller ring is the major contributor to silt abrasion of the impeller ring. The J-grooves induce two strong vortices, which increase the radial component of the relative velocity of water and reduce the silt concentration around the impeller ring, but additional friction losses are introduced and the pump efficiency is decreased. Optimization of the number and shape of J-grooves decreases losses in the efficiency of the pump, and effectively protects the impeller ring. Case 4 was found the most effective configuration in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.