Abstract
As the demand for high-density, high-performance technologies in semiconductor systems increases, efforts are being made to mitigate and optimize the issues of high current density and heat generation within interconnects to ensure reliability. While interconnects are the most fundamental pathways for transmitting current signals, there has been relatively little research conducted on them compared to individual unit devices from the perspective of overall system performance. However, as integration density increases, the amount of loss in interconnects also rises, necessitating research and development to minimize these losses. In this study, we propose a method to analyze power efficiency by utilizing the differences between simulation results and measured results of interconnect structures. We confirmed that the difference between theoretical resistance values and actual measured values varies with the contact area ratio between metal lines and vias, and we analyzed the power efficiency based on these differences. Using the findings, we proposed and validated a structure that can improve power efficiency. This study presents a method to analyze power efficiency and suggests ways to achieve higher power efficiency within the limited specifications of interconnects. This contributes to enhancing power efficiency and ensuring reliability, thereby preserving the performance of the overall system in highly integrated semiconductor systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.