Abstract

Atmospheric-pressure chemical vapor deposition of silicon carbide in a tubular hot-wall reactor using a polymeric source was studied. A three-dimensional model of the reactor was solved numerically based on the finite-volume method. To achieve the best desired conditions, the effects of substrate temperature, mass fraction of polycarbosilane (–Si[CH3]2–), inlet velocity, and substrate location on the SiC deposition rate were considered. These effects were investigated to obtain the optimum conditions by using the design of experiments (DoE) method. Finally, several contours are presented to help designers find suitable reactor conditions for higher performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.