Abstract

This paper presents a systematic methodology to analyze the shrinkage and warpage in an injection-molded part with a thin shell feature during the injection molding process. The systematic experimental design based on the response surface methodology (RSM) is applied to identify the effects of machining parameters on the performance of shrinkage and warpage. The experiment plan adopts the centered central composite design (CCD). The quadratic model of RSM associated sequential approximation optimization (SAO) method is used to find the optimum value of machining parameters. One real case study in the injection molding process of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) cell phone shell has been performed to verify the proposed optimum procedure. The mold temperature (M T), packing time (P t), packing pressure (P P) and cooling time (C t) in the packing stage are considered as machining parameters. The results of analysis of variance (ANOVA) and conducting confirmation experiments demonstrate that the quadratic models of the shrinkage and warpage are fairly well fitted with the experimental values. The individual influences of all machining parameters on the shrinkage and warpage have been analyzed and predicted by the obtained mathematical models. For the manufacture of PC/ABS cell phone shell, the values of shrinkage and warpage present the reduction of 37.8 and 53.9%, respectively, using this optimal procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.