Abstract
This paper presents a novel method of capturing more energy from the wind using short-term energy storage in a hydrostatic wind turbine. A hydrostatic transmission (HST) not only provides reliable operation but also enables energy management features like energy regeneration using hydraulic accumulators. In this study, turbulence-induced wind transients occurring near the rated power are exploited to extract more energy from the wind. Wind characteristics are analyzed to develop models to quantify the energy losses due to the wind turbulence and the potential energy gains from the short-term energy storage. A dynamic simulation model of the hydrostatic wind turbine and the proposed energy storage system is developed. A rule-based control strategy for the energy storage is proposed. Results show that in a 50 kW hydrostatic wind turbine, the annual energy production (AEP) can be increased by 4.1% with a 60 liter hydraulic accumulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.