Abstract

Shiga toxin (STX), a bacterial toxin produced by Shigella dysenteriae type 1, is a hexamer composed of five receptor-binding B subunits which encircle an alpha-helix at the carboxyl terminus of the enzymatic A polypeptide. Hybrid toxins constructed by fusing the A polypeptide sequences of STX and Shiga-like toxin type II were used to confirm that the carboxyl terminus of the A subunits governs association with the B pentamers. The alpha-helix of the 293-amino-acid STX A subunit contains nine residues (serine 279 to methionine 287) which penetrate the nonpolar pore of the B-subunit pentamer. Site-directed mutagenesis was used to establish the involvement of two residues bordering this alpha-helix, aspartic acid 278 and arginine 288, in coupling the C terminus of StxA to the B pentamer. Amino acid substitutions at StxB residues arginine 33 and tryptophan 34, which are on the membrane-contacting surface of the pentamer, reduced cytotoxicity without affecting holotoxin formation. Although these B-subunit mutations did not involve receptor-binding residues, they may have induced an electrostatic repulsion between the holotoxin and the mammalian cell membrane or disrupted cytoplasmic translocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.