Abstract

BackgroundGrowth Differentiation Factor-15 (GDF-15) is involved in insulin resistance and diabetes. But its association with mothers against decapentaplegic homolog 7 (Smad7), miR-21, and miR-181b in peripheral blood mononuclear cells (PBMCs) of prediabetes and type 2 diabetes (T2DM) patients without comorbidities is not established. The roles of miR-21 and miR-181b as diagnostic tools in these conditions also need exploration. MethodsOne hundred sixteen patients, including diabetics (n = 56), pre-diabetics (n = 30), and non-diabetic controls (n = 30), were recruited. Fasting venous blood samples were collected for biochemical analyses, total RNA isolation, and real-time PCR. ResultsSerum GDF-15 showed an increasing trend from healthy controls to pre-diabetic and T2DM patients. Our study also showed upregulated miR-21 and miR-181b and downregulated Smad7 expressions in prediabetes and T2DM groups. Serum GDF-15 was positively associated with miR-21 (ρ = 0.345, p < 0.001) and miR-181b (ρ = 0.398, p < 0.001), and negatively associated with Smad7 (ρ = −0.196, p = 0.035). Both miR-21 and miR-181b were positively associated with HbA1c, fasting blood sugar, and each other. In T2DM, miR-21 showed a significant discriminatory power (area under the curve 0.806, p < 0.05) compared to healthy controls. ConclusionOur findings suggest that GDF-15 and miR-21 can be used as non-invasive and rapid tools for delineating prediabetes and T2DM states, which can be validated in larger prospective cohorts. The significant association of serum GDF-15 with miR-21, miR-181b, and Smad7 suggest possible regulatory roles of these molecules in prediabetes and T2DM. Further studies are necessary to explore these molecules as potential therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call