Abstract

This paper analyzed the four series-parallel (SP) compensation topologies to achieve constant current (CC) and voltage (CV) output characteristics and zero phase angle (ZPA) input conditions with fewer compensation components in the capacitive power transfer (CPT) system. There are three main contributions. Firstly, the universal methodology of SP compensation topologies was constructed to achieve CC, CV output, and ZPA conditions. Secondly, four specific SP compensation topologies were investigated and summarized, including double-sided LC, double-sided CL, CL−LC, and LC−CL topologies. Their input–output characteristics are provided, and system efficiency is analyzed. Thirdly, the CL−LC and LC−CL topologies were proposed to realize ZPA conditions under CC and CV output without any external regulating circuit. A CV output LC−CL experiment prototype was implemented to validate the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.