Abstract
The decision to move Indonesia's capital city to East Kalimantan received mixed responses on social media. When the poverty rate is still high and the country's finances are difficult to be a factor in disapproval of the relocation of the national capital. Twitter as one of the popular social media, is used by the public to express these opinions. How is the tendency of community responses related to the move of the National Capital and how to do public opinion sentiment analysis related to the move of the National Capital with Feature Selection Naive Bayes Algorithm and Support Vector Machine to get the highest accuracy value is the goal in this study. Sentiment analysis data will take from public opinion using Indonesian from Twitter social media tweets in a crawling manner. Search words used are #IbuKotaBaru and #PindahIbuKota. The stages of the research consisted of collecting data through social media Twitter, polarity, preprocessing consisting of the process of transform case, cleansing, tokenizing, filtering and stemming. The use of feature selection to increase the accuracy value will then enter the ratio that has been determined to be used by data testing and training. The next step is the comparison between the Support Vector Machine and Naive Bayes methods to determine which method is more accurate. In the data period above it was found 24.26% positive sentiment 75.74% negative sentiment related to the move of a new capital city. Accuracy results using Rapid Miner software, the best accuracy value of Naive Bayes with Feature Selection is at a ratio of 9:1 with an accuracy of 88.24% while the best accuracy results Support Vector Machine with Feature Selection is at a ratio of 5:5 with an accuracy of 78.77%.
Highlights
The decision to move Indonesia's capital city to East Kalimantan received mixed responses on social media
Hasil Accuracy Algoritma Naive Bayes dengan Feature Selection Rasio 9:1 dengan polarity manual ada pada rasio 5:5 dengan hasil akurasi 78.77% dan hasil rata-rata accuracy 77.95%, rata-rata precision 77.63%, hasil rata-rata recall 99.43% dan rata-rata Area Under Curve (AUC) 0.774
In 2016 4th international conference on Machine untuk Sentimen Analisis Komisi Pemilihan Umum, information and communication Technology, Bandung, May 25- Jurnal Resti (Rekayasa Sistem dan Teknologi Informasi) Vol 3
Summary
Jakarta - Presiden Joko Widodo (Jokowi) akhirnya resmi memilih Provinsi Kalimantan Timur (Kaltim) sebagai ibu kota negara Indonesia yang baru. Penelitian ini adalah melakukan analisis sentimen algoritma yang digunakan adalah algoritma Support terhadap tweet berbahasa Indonesia pada Twitter berupa Vector Machine dengan feature selection dan algoritma opini masyarakat terhadap keputusan pemerintah Naive Bayes dengan feature selection dengan. Naive Bayes menghasilkan nilai akurasi terendah yang akan dimasukkan pada algoritma Support Vector sebesar 57,06% dari rasio 1:9 dan menghasilkan nilai Machine dengan feature selection dan Naive Bayes akurasi tertinggi sebesar 62,09% dari rasio 7:3 pada dengan feature selection dalam menentukan nilai akurasi proses pengujian dengan memakai sampel sebesar 606 menentukan respon masyarakat terhadap pemindahan data. Setelah melakukan penelitian dengan model algoritma Naive Bayes Classifier tanpa feature selection dan dibandingkan dengan model Naive Bayes Classifier dengan feature selection dapat disimpulkan bahwa penggunaan feature selection Particle Swarm Optimization (PSO) dapat meningkatkan nilai dari Accuracy dan AUC. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol . 4 No 3 (2020) 504 – 512 506
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.