Abstract

A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple commonly used therapeutic classes was developed for biological tissues (fish), reclaimed water, and the surface water directly affected by irrigation with reclaimed water. One gram of fish tissue homogenate was extracted by accelerated solvent extraction with methylene chloride followed by mixed-mode cation exchange solid phase extraction (SPE) cleanup and analyzed by liquid chromatography-tandem mass spectrometry. Compared to previously reported methods, the protocol produces cleaner extracts resulting in lower method detection limits. Similarly, an SPE method based on Oasis HLB cartridges was used to concentrate and cleanup reclaimed and surface water samples. Among the 11 target compounds analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin, and fluoxetine were consistently detected in reclaimed water. Caffeine, diphenhydramine, and carbamazepine were consistently detected in fish and surface water samples. Bioaccumulation factors for caffeine, diphenhydramine, and carbamazepine in mosquito fish (Gambusia holbrooki) were calculated at 29 ± 26, 821 ± 422, and 108 ± 144, respectively. This is the first report of potential accumulation of caffeine in fish from a water body directly influenced by reclaimed water. Figure The pharmaceuticals detected in reclaimed water and the fresh water directly affected by reclaimed water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.