Abstract

The analysis of protein expression profile using SELDI-TOF-MS can assist early detection of ovarian cancer. The chance to save patient’s life is greater when ovarian cancer is detected at an early stage. However, the analysis of protein expression profile is challenging because it has very high dimensional features and noisy characteristic. In order to tackle these limitations, the ε-Support Vector Regression model to identify ovarian cancer is proposed. We can show that the performance of the model to discriminate the protein expression profile with cancer disease from the normal ones can reach accuracy 99%, specificity 99% and sensitivity 100%. This result shows that the model is promising for SELDI-TOFMS analysis in Ovarian Cancer identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.