Abstract

Seismocardiographic (SCG) signals are chest surface vibrations induced by cardiac activity. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. One approach of determining signal features is to estimate its time-frequency characteristics. In this regard, four different time-frequency distribution (TFD) approaches were used including short-time Fourier transform (STFT), polynomial chirplet transform (PCT), Wigner-Ville distribution (WVD), and smoothed pseudo Wigner-Ville distribution (SPWVD). Synthetic SCG signals with known time-frequency properties were generated and used to evaluate the accuracy of the different TFDs in extracting SCG spectral characteristics. Using different TFDs, the instantaneous frequency (IF) of each synthetic signal was determined and the error (NRMSE) in estimating IF was calculated. STFT had lower NRMSE than WVD for synthetic signals considered. PCT and SPWVD were, however, more accurate IF estimators especially for the signal with time-varying frequencies. PCT and SPWVD also provided better discrimination between signal frequency components. Therefore, the results of this study suggest that PCT and SPWVD would be more reliable methods for estimating IF of SCG signals. Analysis of actual SCG signals showed that these signals had multiple spectral components with slightly time-varying frequencies. More studies are needed to investigate SCG spectral properties for healthy subjects as well as patients with different cardiac conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call