Abstract
In this study, we first consider a second order time stepping finite element BDF2‐AB2 method for the Navier‐Stokes equations (NSE). We prove that the method is unconditionally stable and accurate. Second, we consider a nonlinear time relaxation model which consists of adding a term “” to the Navier‐Stokes Equations with the algorithm depends on BDF2‐AB2 method. We prove that this method is unconditionally stable, too. We applied the BDF2‐AB2 method to several numeral experiments including flow around the cylinder. We have also applied BDF2‐AB2 method with nonlinear time relaxation to some problems. It is observed that when the equilibrium errors are high, applying BDF2‐AB2 with nonlinear time relaxation method to the problem yields lower equilibrium errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.