Abstract

Scotch Whisky has been analysed as a complex mixture in its raw form using high resolution Nuclear Magnetic Resonance (NMR) and previously developed water and ethanol suppression techniques. This has allowed for the positive identification of 25 compounds in Scotch Whisky by means of comparison to reference standards, spike-in experiments, and advanced 1D and 2D NMR experiments. Quantification of compounds was hindered by signal overlap, though peak alignment strategies were largely successful. Statistical total correlation spectroscopy (STOCSY) yielded information on signals arising from the same compound or compounds of similar origin. Statistical analysis of the spectra was performed using Independent and Principal Components Analysis (ICA, PCA) as well as Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). Several whisky production parameters were successfully modelled, including blend or malt status, use of peated malt, alcohol strength, generic authentication and maturation wood type, whilst age and geographical origin could not be modelled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.