Abstract

The Canadian masonry design standard appears to be overly conservative in determining the capacity of concrete block walls with slenderness ratios greater than 30. When assessing the potential for buckling of a masonry wall according to Euler buckling criteria, the effective height is determined in part from the end supports. In Euler theory only pinned, fixed and free support conditions are considered, and the Canadian standard considers the support conditions to be hinged, elastic or stiff. For a partially reinforced masonry wall a true hinged base support is expected to be difficult to achieve, as the width of the concrete block restrains rotation. The effect of the base support conditions on the deflected shape of partially grouted block walls was investigated under axial and out-of-plane loading. The results of this testing were compared with calculations based on the Canadian masonry standard. It becomes clear that the standard is overly conservative in many cases and the design of slender walls needs to be re-examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.