Abstract

Brassica oleracea is a strictly self-incompatible (SI) plant, but rapid-cycling B. oleracea 'TO1000DH3' is self-compatible (SC). Self-incompatibility in Brassicaceae is controlled by multiple alleles of the S-locus. Three S-locus genes, S-locus glycoprotein (SLG), S-locus receptor kinase (SRK) and S-locus protein 11 or S-locus cysteine-rich (SP11/SCR), have been reported to date, all of which are classified into class I and II. In this study, we investigated the molecular mechanism behind alterations of SI to SC in rapid-cycling B. olerace 'TO1000DH3'. Class I SRK were identified by genomic DNA PCR and PCR-RFLP analysis using SRK specific markers and found to be homozygous. Cloning and sequencing of class I SRK revealed a normal kinase domain without any S-domain/transmembrane domain. Moreover, S-locus sequencing analysis revealed only an SLG sequence, but no SP11/SCR. Expression analysis showed no SRK expression in the stigma, although other genes involved in the SI recognition reaction (SLG, MLPK, ARC1, THL) were found to have normal expression in the stigma. Taken together, the above results suggest that structural aberrations such as deletion of the SI recognition genes may be responsible for the breakdown of SI in rapid-cycling B. oleracea 'TO1000DH3'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.