Abstract

In this paper, the complex network theory is used to analyze the spatial and topological structure of the Unified National Electricity Grid (UNEG)—Russia’s power transmission grid, the major part of which is managed by Federal Grid Company of the Unified energy system. The research is focused on the applicability of the small-world model to the UNEG network. Small-world networks are vulnerable to cascade failure effects what underline importance of the model in power grids analysis. Although much research has been done on the applicability of the small-world model to national power transmission grids, there is no generally accepted opinion on the subject. In this paper we, for the first time, used the latticization algorithm and small-world criterion based on it for transmission grid analysis. Geo-latticization algorithm has been developed for a more accurate analysis of infrastructure networks with geographically referenced nodes. As the result of applying the new method, a reliable conclusion has been made that the small-world model is applicable to the UNEG. Key nodes and links which determine the small-world structure of the UNEG network have been revealed. The key power transmission lines are critical for the reliability of the UNEG network and must be the focal point in preventing large cascade failures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call