Abstract
Harmonic wear is one of the most common forms of out-of-round wheel (OOR), especially in heavy locomotives, potentially affecting the running stability. In this paper, a locomotive wheel-rail interaction coupled dynamic model was established for numerical simulation, and common harmonic wear types of locomotive wheels were employed as excitations of the dynamic model. Then, accelerations and Sperling indices of the locomotive in different harmonic wear types were calculated and compared. The result shows that harmonic order has a great influence on locomotive lateral vibration, and has a little effect on the vertical vibration in the same harmonic wave depth; harmonic wave depths have a larger effect on the lateral and vertical Sperling indices in the same harmonic order; compared with no harmonic wear, the lateral stability in different harmonic wear types will change obviously while the vertical stability will not change significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.