Abstract

An isosceles-trapezoidal flexural pivot can be of great use for practical designs, especially in the cases that a pure rotation about a virtual pivot is required. The analysis of rotational precision for such a structure is important for the mechanical design in precise-required applications. For this purpose, a rigid isosceles-trapezoidal linkage model is first proposed to provide an accurate analytical result for its notch-type flexural counterpart. The influence of dimensional parameters on the center shift is discussed. In order to disclose the equivalence between leaf-type flexure structure and its pseudo-rigid-body model, a transitional model is introduced, from which an equivalent pseudo-rigid-body model for leaf-type isosceles-trapezoidal flexure structure is then derived. The results of both simulation and experiment verify that the equivalent rigid model is also accurate enough in the case of a larger deflection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.