Abstract

The material removal rate (MRR), along with the electrode wear rate (EWR), plays an important role in analysing machine output during electrical discharge machining. This work focuses on the improvement of machine output by introducing an induced magnetic field on the workpiece during rotary electrical discharge machining (REDM) of EN-8 steel with a rotary copper electrode. The workpiece was placed inside the induced magnetic field, wherein polarity of the magnetic field gets reversed periodically. Using Taguchi’s recommended design of experiments, we initially conducted experiments with eight input parameters at different levels . Significant parameters were identified with the help of the signal-to-noise ratio and ANOVA. Finally, another set of experiments was conducted for analysis of the process and development of empirical expressions for MRR and EWR. Experimental results established that rotary electrical discharge machining with a polarity reversal magnetic field delivers better machining output than machining in a non-magnetic field. Thus, this work benefits the EDM process by reducing the machining costs and by producing better geometrical trueness on workpieces, as MRR increased and EWR decreased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.