Abstract

This paper presents an analysis of roll bite heat transfers during hot steel strip rolling. Two types of temperature sensors (drilled sensor /slot sensor) implemented near roll surface and heat transfer models are used to identify in the roll bite interfacial heat flux, temperature and Heat Transfer Coefficient HTCroll-bite during pilot rolling tests. It is shown that: - the slot type sensor is much more efficient than the drilled type sensor to capture correctly fast roll temperature changes in the bite during hot rolling but life’s duration of the slot sensor is shorter. - average HTCroll-bite, identified with roll sensors temperature signals is within the range 15-26 kW/m2/K: the higher the strip reduction is, the higher the HTCroll-bite is. - scale thickness at strip surface tends to decrease heat transfers from strip to roll in the roll bite. - HTCroll-bite appears not uniform along the roll-strip contact, in contrast to usual assumptions made in existing models - Heat dissipated by friction at roll-strip interface and its partitioning through roll and strip respectively seems over-estimated in the existing thermal roll gap model [1]. Modeling of interfacial friction heat dissipation should be reviewed and verified. The above results show the interest of roll temperature sensors to determine accurately roll bite heat transfers and evaluate more precisely the corresponding roll thermal fatigue degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call