Abstract

In the past decades, a lot of effort has been put into roadway traffic safety. With the help of data mining, the analysis of roadway traffic data is much needed to understand the factors related to fatal accidents. This paper analyses Fatality Analysis Reporting System (FARS) data set using several data mining algorithms. Here, we compare the performance of four meta-classifiers and four data-oriented techniques known for their ability to handle imbalanced datasets, entirely based on Random Forest classifier. Also, we study the effect of applying several feature selection algorithms including PSO, Cuckoo, Bat and Tabu on improving the accuracy and efficiency of classification. The empirical results show that the Threshold selector meta-classifier combined with over-sampling techniques results were very satisfactory. In this regard, the proposed technique has gained a mean overall Accuracy of 91% and a Balanced Accuracy that varies between 96% to 99% using 7-15 features instead of 50 original features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.