Abstract

A new analytical and numerical method is presented for modeling and analysis of cylindrical shells stiffened by circumferential rings. This method treats the shell and ring stiffeners as individual structural components, and considers the ring eccentricity with respect to the shell middle surface. Through use of the distributed transfer functions of the structural components, various static and dynamic problems of stiffened shells are systematically formulated. With this transfer function formulation, the static and dynamic response, natural frequencies and mode shapes, and buckling loads of general stiffened cylindrical shells under arbitrary external excitations and boundary conditions can be determined in exact and closed form. The proposed method is illustrated on a Donnell-Mushtari shell, and compared with finite element method and two other modeling techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.