Abstract

The investigation analyzes effects of clearance size in revolute and spherical joints with clearance on rigid-flexible dynamic of a space slider crank mechanism by finite element method. The model of the mechanism was designed by Solidworks and then velocity, acceleration, displacement, stress and contact force were determined by finite element analysis of rigid-transient dynamic in ANSYS. The results simulation indicated that the clearance size in revolute and spherical with clearance has sightly effected on the velocity of the slider, but has significantly effected on acceleration, contact force as journal and ball impact into bearing and socket with high peaks of acceleration and contact force as presented in the graph of acceleration and contact forces. The graph outlined that journal and ball motion with three types: free light, contact and impact motion. Clearance size created deviation for the displacement of the slider from 4.29 mm to 9.87 mm and maximum principal stress increases from 8.4 MPa to 10 MPa when clearance size increases from 0 mm to 0.3 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.