Abstract
This paper reports on electromechanical, switching time and performance analysis of capacitive shunt RF MEMS switch with uniform and non-uniform meanders. The MEMS switch is a freely moving membrane over coplanar wave guide. Electromechanical analysis is done for movable beam with gold as material and dielectric as Si3N4 and HfO2. For these dielectric materials pull in voltage is 2.3 and 2 V respectively with beam thickness of 0.8 µm by using COMSOL FEM Tool. Si3N4 with dielectric constant of 7.6 gives Cratio of 8.69 and 11.13 for 0.8 and 0.6 μm of beam thickness respectively. RF performance analysis is done by using HFSS software and the simulation results states that non uniform single meander has return loss as −60 dB, insertion loss −0.2 dB and isolation loss −14 dB at 20 GHz frequency and uniform 3 meander switch has return loss as −55 dB. Switching time analysis is done by using MATLAB. For uniform three meander it is 0.12 ms and for non-uniform one meander beam it is 0.7 ms. Whereas use of HfO2 with dielectric constant of 14 as dielectric gives Cratio of 14.93 and 19.66 for 0.8 and 0.6 μm of beam thickness respectively with gap between the electrode beam and dielectric as 0.8 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.