Abstract

Pure Be, Be-O and Be-O-C thin coatings were deposited using high-power impulse magnetron sputtering (HiPIMS) with and without incorporation of deuterium. The coatings produced without deuterium were implanted afterwards with 15 keV 2H+ ion beams with a fluence limited to 2 × 1017 ion/cm2 in order to mitigate the damage imposed by ion irradiation and prevent a fast gas release. The as-deposited and as-implanted coatings were analysed by IBA techniques, namely by elastic and Rutherford backscattering spectrometries (EBS and RBS, respectively), nuclear reaction analysis (NRA) and by time-of-flight elastic recoil detection analysis (ToF-ERDA). Despite distinct deuterium depth profiles in the implanted samples, the results show that for the present ion implantation and deposition parameters, similar retained amounts are revealed in the films loaded by ion implantation or during the HiPIMS deposition, assuring ion implantation as a competitive and reliable method for fuel incorporation in thin Be-based films for retention studies in controlled conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.