Abstract

The evaluation of mitochondrial function provides the basis for the study of brain bioenergetics. However, analysis of brain mitochondrial respiration has been hindered by the low yield associated with mitochondria isolation procedures. Furthermore, isolating mitochondria or cells results in loss of the inherent complexity of the central nervous system. High-resolution respirometry (HRR), is a valuable tool to study mitochondrial function and has been used in diverse biological preparations ranging from isolated mitochondria to tissue homogenates and permeabilized tissue biopsies. Here we describe a novel methodology for evaluation of mitochondrial respiration using tissue preparations from the central nervous system, namely acute hippocampal slices from rodents, with HRR. By using acute intact hippocampal slices, tissue cytoarchitecture, intercellular communication and connectivity are preserved. Mitochondrial respiration was evaluated by using an adapted substrate-uncoupler-inhibitor titration (SUIT) protocol and the expected responses were observed. This methodology can be used to detect differences in mitochondrial function at the oxidative phosphorylation level and for studies with different brain oxidative substrates in physiological and neuropathological settings, by using a system that better represents the in vivo conditions than isolated mitochondria and/or cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.