Abstract

The model of resonance energy transfer (RET) in membrane systems containing donors randomly distributed over two parallel planes separated by fixed distance and acceptors confined to a single plane is presented. Factors determining energy transfer rate are considered with special attention being given to the contribution from orientational heterogeneity of the donor emission and acceptor absorption transition dipoles. Analysis of simulated data suggests that RET in membranes, as compared to intramolecular energy transfer, is substantially less sensitive to the degree of reorientational freedom of chromophores due to averaging over multiple donor-acceptor pairs. The uncertainties in the distance estimation resulting from the unknown mutual orientation of the donor and acceptor are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.