Abstract

In this paper finite element simulation and neutron diffraction measurements are employed to assess the residual stresses in an AISI 316LN austenitic stainless steel plate containing a three-pass finite length weld in a machined slot. This work forms a part of the Task Group 4 (TG4) measurement and simulation round robin being undertaken by the NeT European network. Finite element (FE) simulations were carried out using the FEAT-WMT and ABAQUS commercial finite element packages. The welding process was modelled both using a 3D moving-heat source (MHS) which is spatially correct but computationally expensive and using a simplified “block-dumped” methodology (BD) in which an entire weld bead is deposited simultaneously. This does not reproduce the effects of welding torch movement, but is computationally less expensive. The mechanical analyses used combined isotropic-kinematic material constitutive models with a two-stage annealing functionality to remove plastic strain accumulated at high temperatures. The finite element predictions of weld residual stress are compared with neutron diffraction measurements obtained on the KOWARI diffractometer at the OPAL reactor at ANSTO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.