Abstract

Cold working of holes is an effective method used to enhance the fatigue life of aerospace structures. The method introduces a zone of compressive residual stresses around the hole, which attenuates fatigue crack growth rates by reducing the effective stress intensity factor range. Therefore, the method reduces the tendency for fatigue cracks to initiate and grow under cyclic loading. Aircraft components are subjected to a complicated sequence of variable fatigue loading during service. Residual stresses around cold expanded holes can be relaxed because of the plastic deformation produced by in-service loading. We have studied the changes of residual stress distribution around a 4% cold expanded hole in 2024-T351 aluminium alloy, when the plate was subjected to different values of compressive overloading. Results from an FE model and X-ray diffraction measurements are presented and compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.