Abstract
In this paper, we studied the effect of rubidium fluoride (RbF) post-deposition treatment (PDT) on the properties of Cu(In,Ga)Se2 (CIGS) solar cells. Specifically, the recombination mechanisms were analyzed by a series of characterizations including thermal and optical defect spectroscopies, temperature dependent current density–voltage measurements, and time resolved photoluminescence. It was found that the main effect of RbF PDT on the solar cell was an increase of the open circuit-voltage, $V_{{\text{oc}}}$ , by 30 mV due to a decrease of the values of the diode quality factor and reverse saturation current. Recombination mechanisms were identified as being in the CIGS space charge region, likely at the grain boundaries and near the CIGS surface. Breakdown of contributions to the $V_{{\text{oc}}}$ increase showed that part of it is due to an increase of the majority carrier concentration (16 mV) and another to the increase in the minority carrier lifetime (1 mV). The latest is mostly due to a reduction in the EV+0.99 eV deep-level trap density. An additional CIGS surface modification (contributing 13 mV), observed by the secondary ion mass spectrometry, is essential to explain the full change in $V_{{\text{oc}}}$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.