Abstract

Essentially all eukaryotic cells contain circular extrachromosomal DNA as a result of excision from the chromosomes. To obtain insight into the nature of recombination associated with the occurrence of such DNA species and its biological significance, we analyzed a library enriched in recombination junctions which was constructed by a novel DNA subtraction technique; in-gel competitive reassociation (IGCR). Furthermore, we also introduced inverse PCR to characterize chromosomal DNA fragments containing the recombination junctions. At least 45% of the clones in the library constructed by the IGCR procedure comprised DNA with recombination junctions. Nucleotide sequence analysis of the recombination junctions indicated that three of four extrachromosomal DNAs thus analyzed were produced through recombination between sequences with a 3–5 bp homology in the chromosomes. One extrachromosomal DNA was apparently generated through non-homologous recombination, possibly by end-to-end joining. These results have demonstrated the usefulness of IGCR in concentrating recombination junctions, which provide the most direct evidence for the mechanism of the recombinational events involved, from highly complex genomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.