Abstract
We investigate the effects of range separation of the exchange energy on electronic ground-state properties for recently published double-hybrid density functionals (DHDFs) with the extensive GMTKN55 database for general main-group thermochemistry, kinetics, and noncovalent interactions. We include the semiempirical range-separated DHDFs ωB2PLYP and ωB2GP-PLYP developed by our group for excitation energies, together with their ground-state-parametrized variants, which we denote herein as ωB2PLYP18 and ωB2GP-PLYP18. We also include the nonempirical range-separated DHDFs RSX-0DH and RSX-QIDH. For all six DHDFs, damping parameters for the DFT-D3 dispersion correction (and for its DFT-D4 variant) are presented. We comment on when the range-separated functionals can be more beneficial than their global counterparts and conclude that range separation alone is no guarantee for overall improved results. We observe that the BLYP-based functionals generally outperform the PBE-based functionals. We finally note that the best-performing DHDFs for GMTKN55 are still the semiempirical range-separated double hybrids ωDSD3-PBEP86-D4 and ωDSD72-PBEP86-D4, the former of which includes a third-order perturbative correlation term in addition to the more conventional second-order perturbation that DHDFs are based upon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.