Abstract

RecA-independent recombination events between short direct repeats, leading to deletion of the intervening sequences, were found to occur in two genetic models in the Escherichia coli K12 background. The first model was a small E. coli genomic island which had been shown to be mobile in its strain of origin and, when cloned, also in the E. coli K12 context. However, it did not encode a site-specific recombinase as mobile genomic islands usually do. It was then deduced that the host cells should provide the recombination function. This latter was searched for by means of a PCR approach to detect the island excision in E. coli K12 mutants affected in a number of recombination functions, including the 16 E. coli K12 site-specific recombinases, the RecET system, and multiple proteins that participate in the RecA-dependent pathways of homologous recombination. None of these appeared to be involved in the island excision. The second model, analyzed in a RecA deficient context, was a plasmid construction containing a short direct repeat proceeding from Saccharomyces cerevisiae, which flanked the cat gene. The excision of this gene by recombination of the DNA repeats was confirmed by PCR and through the detection, recovery and characterization of the plasmid deleted form. In sum, we present new evidence on the occurrence of RecA-independent recombination events in E. coli K12. Although the mechanism underlying these processes is still unknown, their existence suggests that RecA-independent recombination may confer mobility to other genetic elements, thus contributing to genome plasticity.

Highlights

  • Bacterial genomes contain short repeated DNA sequences, which are prone to recombine and generate genetic rearrangements

  • Recombination underlying the H47 GI mobility was studied through the detection of the island excision from a multi-copy recombinant plasmid, pEX2000, in the context of E. coli K12 cells

  • Recombination between them leads to the excision of the H47 GI, which is assessed by PCR using primers ‘‘out’’ in order to detect the occurrence of the empty attC site (Fig. 1A)

Read more

Summary

Introduction

Bacterial genomes contain short repeated DNA sequences, which are prone to recombine and generate genetic rearrangements. The H47 GI was found to be an unstable mobile element, able to excise from the chromosome by recombination between its attachment sites (attL and attR) in a process generating two products: the chromosome without the island and the island as an independent covalently closed circular molecule (Fig. 1A) (Azpiroz, Bascuas & Laviña, 2011). Amplicons containing the attC site were a mix of four sequences corresponding to recombination at the four main regions of homology between attL and attR This recombination pattern remained unchanged when the analysis was carried out in RecA-deficient E. coli K12 cells, indicating that the H47 GI mobility is a process independent from the homologous recombination pathway (Fig. 1C and S1) (Azpiroz, Bascuas & Laviña, 2011)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.