Abstract

Variables affecting children's exposure during school bus commutes were investigated using real-time measurements of black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PB-PAH) and nitrogen dioxide (NO2) inside 3 conventional diesel school buses, a particle trap-outfitted (TO) diesel school bus and a compressed natural gas (CNG) school bus, while traveling along an urban Los Angeles Unified School District bus route. A video camera was mounted at the front of each bus to record roadway conditions ahead of the bus during each commute. The videotapes from 12 commutes, in conjunction with pollutant concentration time series, were used to determine the influence of variables such as vehicles being followed, bus type and roadway type on pollutant concentrations inside the bus. For all buses tested, the highest concentrations of BC, PB-PAH and NO2 were observed when following a diesel school bus, especially if that bus was emitting visible exhaust. This result was important because other diesel school buses were responsible for the majority of the diesel vehicle encounters, primarily due to caravanning with each other when leaving a school at the same time. Compared with following a gasoline vehicle or no target, following a smoky diesel school bus yielded BC and PB-PAH concentrations inside the cabin 8 and 11 times higher, respectively, with windows open, and ∼1.8 times higher for both pollutants with windows closed. When other diesel vehicles were not present, pollutant concentrations were highest inside the conventional diesel buses and lowest inside the CNG bus, while the TO diesel bus exhibited intermediate concentrations. Differences in pollutant concentrations between buses were most pronounced with the bus windows closed, and were attributed to a combination of higher concentrations in the exhaust and higher exhaust gas intrusion rates for the conventional diesel buses. Conventional diesel school buses can have a double exposure impact on commuting children: first, exposures to the exhaust from other nearby diesel school buses and, second, exposure to the bus's own exhaust through “self-pollution”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call